Decomposition algorithms for two-stage chance-constrained programs
نویسندگان
چکیده
We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve this class of problems. Computational results on a chance-constrained resource planing problem indicate that our algorithms are highly effective in solving these problems compared to a mixed-integer programming reformulation and a naive decomposition method. Keywords— two-stage stochastic programming , chance constraints , Benders decomposition , cutting planes
منابع مشابه
Ambiguous Chance Constrained Programs: Algorithms and Applications
Ambiguous Chance Constrained Programs: Algorithms and Applications Emre Erdoğan Chance constrained problems are optimization problems where one or more constraints ensure that the probability of one or more events occurring is less than a prescribed threshold. Although it is typically assumed that the distribution defining the chance constraints are known perfectly; in practice this assumption ...
متن کاملScenario grouping and decomposition algorithms for chance-constrained programs
A lower bound for a finite-scenario chance-constrained problem is given by the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of larger subproblems. The quality of the bound depends on how the scenarios are grouped. We formulate a mixed-integer bilevel program that o...
متن کاملDiscrepancy Distances and Scenario Reduction in Two-stage Stochastic Mixed-integer Programming
Polyhedral discrepancies are relevant for the quantitative stability of mixed-integer two-stage and chance constrained stochastic programs. We study the problem of optimal scenario reduction for a discrete probability distribution with respect to certain polyhedral discrepancies and develop algorithms for determining the optimally reduced distribution approximately. Encouraging numerical experi...
متن کاملScalable Heuristics for Stochastic Programming with Scenario Selection
We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate ...
متن کاملDECOMPOSITION ALGORITHMS FOR TWO-STAGE STOCHASTIC INTEGER PROGRAMMING By JOHN H. PENUEL, JR. A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DECOMPOSITION ALGORITHMS FOR TWO-STAGE STOCHASTIC INTEGER PROGRAMMING By John H. Penuel, Jr. August 2009 Chair: J. Cole Smith Major: Industrial and Systems Engineering Stochastic programming seeks to optimize decision making in uncertain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 157 شماره
صفحات -
تاریخ انتشار 2016