Decomposition algorithms for two-stage chance-constrained programs

نویسندگان

  • Xiao Liu
  • Simge Küçükyavuz
  • James R. Luedtke
چکیده

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve this class of problems. Computational results on a chance-constrained resource planing problem indicate that our algorithms are highly effective in solving these problems compared to a mixed-integer programming reformulation and a naive decomposition method. Keywords— two-stage stochastic programming , chance constraints , Benders decomposition , cutting planes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ambiguous Chance Constrained Programs: Algorithms and Applications

Ambiguous Chance Constrained Programs: Algorithms and Applications Emre Erdoğan Chance constrained problems are optimization problems where one or more constraints ensure that the probability of one or more events occurring is less than a prescribed threshold. Although it is typically assumed that the distribution defining the chance constraints are known perfectly; in practice this assumption ...

متن کامل

Scenario grouping and decomposition algorithms for chance-constrained programs

A lower bound for a finite-scenario chance-constrained problem is given by the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of larger subproblems. The quality of the bound depends on how the scenarios are grouped. We formulate a mixed-integer bilevel program that o...

متن کامل

Discrepancy Distances and Scenario Reduction in Two-stage Stochastic Mixed-integer Programming

Polyhedral discrepancies are relevant for the quantitative stability of mixed-integer two-stage and chance constrained stochastic programs. We study the problem of optimal scenario reduction for a discrete probability distribution with respect to certain polyhedral discrepancies and develop algorithms for determining the optimally reduced distribution approximately. Encouraging numerical experi...

متن کامل

Scalable Heuristics for Stochastic Programming with Scenario Selection

We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate ...

متن کامل

DECOMPOSITION ALGORITHMS FOR TWO-STAGE STOCHASTIC INTEGER PROGRAMMING By JOHN H. PENUEL, JR. A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DECOMPOSITION ALGORITHMS FOR TWO-STAGE STOCHASTIC INTEGER PROGRAMMING By John H. Penuel, Jr. August 2009 Chair: J. Cole Smith Major: Industrial and Systems Engineering Stochastic programming seeks to optimize decision making in uncertain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2016